3.6.39 \(\int \sec (c+d x) (a+b \tan (c+d x))^3 \, dx\) [539]

Optimal. Leaf size=91 \[ \frac {a \left (2 a^2-3 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {b \sec (c+d x) (a+b \tan (c+d x))^2}{3 d}+\frac {b \sec (c+d x) \left (4 \left (4 a^2-b^2\right )+5 a b \tan (c+d x)\right )}{6 d} \]

[Out]

1/2*a*(2*a^2-3*b^2)*arctanh(sin(d*x+c))/d+1/3*b*sec(d*x+c)*(a+b*tan(d*x+c))^2/d+1/6*b*sec(d*x+c)*(16*a^2-4*b^2
+5*a*b*tan(d*x+c))/d

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 109, normalized size of antiderivative = 1.20, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {3593, 757, 794, 221} \begin {gather*} \frac {b \sec (c+d x) \left (4 \left (4 a^2-b^2\right )+5 a b \tan (c+d x)\right )}{6 d}+\frac {a \left (2 a^2-3 b^2\right ) \sec (c+d x) \sinh ^{-1}(\tan (c+d x))}{2 d \sqrt {\sec ^2(c+d x)}}+\frac {b \sec (c+d x) (a+b \tan (c+d x))^2}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(a + b*Tan[c + d*x])^3,x]

[Out]

(a*(2*a^2 - 3*b^2)*ArcSinh[Tan[c + d*x]]*Sec[c + d*x])/(2*d*Sqrt[Sec[c + d*x]^2]) + (b*Sec[c + d*x]*(a + b*Tan
[c + d*x])^2)/(3*d) + (b*Sec[c + d*x]*(4*(4*a^2 - b^2) + 5*a*b*Tan[c + d*x]))/(6*d)

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 757

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*((a + c*x^2)^(p
 + 1)/(c*(m + 2*p + 1))), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2*(m + 2*p + 1) - a*e^
2*(m - 1) + 2*c*d*e*(m + p)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2,
0] && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, 0, c, d, e, m
, p, x]

Rule 794

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((e*f + d*g)*(2*p
+ 3) + 2*e*g*(p + 1)*x)*((a + c*x^2)^(p + 1)/(2*c*(p + 1)*(2*p + 3))), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(c*
(2*p + 3)), Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, p}, x] &&  !LeQ[p, -1]

Rule 3593

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[d^(2*
IntPart[m/2])*((d*Sec[e + f*x])^(2*FracPart[m/2])/(b*f*(Sec[e + f*x]^2)^FracPart[m/2])), Subst[Int[(a + x)^n*(
1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] &&
 !IntegerQ[m/2]

Rubi steps

\begin {align*} \int \sec (c+d x) (a+b \tan (c+d x))^3 \, dx &=\frac {\sec (c+d x) \text {Subst}\left (\int \frac {(a+x)^3}{\sqrt {1+\frac {x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{b d \sqrt {\sec ^2(c+d x)}}\\ &=\frac {b \sec (c+d x) (a+b \tan (c+d x))^2}{3 d}+\frac {(b \sec (c+d x)) \text {Subst}\left (\int \frac {(a+x) \left (-2+\frac {3 a^2}{b^2}+\frac {5 a x}{b^2}\right )}{\sqrt {1+\frac {x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{3 d \sqrt {\sec ^2(c+d x)}}\\ &=\frac {b \sec (c+d x) (a+b \tan (c+d x))^2}{3 d}+\frac {b \sec (c+d x) \left (4 \left (4 a^2-b^2\right )+5 a b \tan (c+d x)\right )}{6 d}-\frac {\left (a \left (3-\frac {2 a^2}{b^2}\right ) b \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{2 d \sqrt {\sec ^2(c+d x)}}\\ &=\frac {a \left (2 a^2-3 b^2\right ) \sinh ^{-1}(\tan (c+d x)) \sec (c+d x)}{2 d \sqrt {\sec ^2(c+d x)}}+\frac {b \sec (c+d x) (a+b \tan (c+d x))^2}{3 d}+\frac {b \sec (c+d x) \left (4 \left (4 a^2-b^2\right )+5 a b \tan (c+d x)\right )}{6 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(293\) vs. \(2(91)=182\).
time = 1.68, size = 293, normalized size = 3.22 \begin {gather*} \frac {36 a^2 b-10 b^3-6 a \left (2 a^2-3 b^2\right ) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+12 a^3 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-18 a b^2 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {9 a b^2}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {b^3}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+2 b \left (18 a^2-b^2+2 b^2 \cos (c+d x)+\left (18 a^2-5 b^2\right ) \cos (2 (c+d x))\right ) \sec ^3(c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )-\frac {9 a b^2}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {b^3}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}}{12 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*(a + b*Tan[c + d*x])^3,x]

[Out]

(36*a^2*b - 10*b^3 - 6*a*(2*a^2 - 3*b^2)*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 12*a^3*Log[Cos[(c + d*x)/2
] + Sin[(c + d*x)/2]] - 18*a*b^2*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (9*a*b^2)/(Cos[(c + d*x)/2] - Sin[
(c + d*x)/2])^2 + b^3/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2 + 2*b*(18*a^2 - b^2 + 2*b^2*Cos[c + d*x] + (18*a
^2 - 5*b^2)*Cos[2*(c + d*x)])*Sec[c + d*x]^3*Sin[(c + d*x)/2]^2 - (9*a*b^2)/(Cos[(c + d*x)/2] + Sin[(c + d*x)/
2])^2 + b^3/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2)/(12*d)

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 146, normalized size = 1.60

method result size
derivativedivides \(\frac {b^{3} \left (\frac {\sin ^{4}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{4}\left (d x +c \right )}{3 \cos \left (d x +c \right )}-\frac {\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )}{3}\right )+3 b^{2} a \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+\frac {3 a^{2} b}{\cos \left (d x +c \right )}+a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(146\)
default \(\frac {b^{3} \left (\frac {\sin ^{4}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{4}\left (d x +c \right )}{3 \cos \left (d x +c \right )}-\frac {\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )}{3}\right )+3 b^{2} a \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+\frac {3 a^{2} b}{\cos \left (d x +c \right )}+a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(146\)
risch \(-\frac {b \left (9 i a b \,{\mathrm e}^{5 i \left (d x +c \right )}-18 a^{2} {\mathrm e}^{5 i \left (d x +c \right )}+6 b^{2} {\mathrm e}^{5 i \left (d x +c \right )}-36 a^{2} {\mathrm e}^{3 i \left (d x +c \right )}+4 b^{2} {\mathrm e}^{3 i \left (d x +c \right )}-9 i a b \,{\mathrm e}^{i \left (d x +c \right )}-18 a^{2} {\mathrm e}^{i \left (d x +c \right )}+6 b^{2} {\mathrm e}^{i \left (d x +c \right )}\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}-\frac {3 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) b^{2}}{2 d}-\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}+\frac {3 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) b^{2}}{2 d}\) \(219\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+b*tan(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(b^3*(1/3*sin(d*x+c)^4/cos(d*x+c)^3-1/3*sin(d*x+c)^4/cos(d*x+c)-1/3*(2+sin(d*x+c)^2)*cos(d*x+c))+3*b^2*a*(
1/2*sin(d*x+c)^3/cos(d*x+c)^2+1/2*sin(d*x+c)-1/2*ln(sec(d*x+c)+tan(d*x+c)))+3*a^2*b/cos(d*x+c)+a^3*ln(sec(d*x+
c)+tan(d*x+c)))

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 111, normalized size = 1.22 \begin {gather*} -\frac {9 \, a b^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} + \log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, a^{3} \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) - \frac {36 \, a^{2} b}{\cos \left (d x + c\right )} + \frac {4 \, {\left (3 \, \cos \left (d x + c\right )^{2} - 1\right )} b^{3}}{\cos \left (d x + c\right )^{3}}}{12 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/12*(9*a*b^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) + log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) - 12*a^3*
log(sec(d*x + c) + tan(d*x + c)) - 36*a^2*b/cos(d*x + c) + 4*(3*cos(d*x + c)^2 - 1)*b^3/cos(d*x + c)^3)/d

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 123, normalized size = 1.35 \begin {gather*} \frac {3 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 18 \, a b^{2} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 4 \, b^{3} + 12 \, {\left (3 \, a^{2} b - b^{3}\right )} \cos \left (d x + c\right )^{2}}{12 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

1/12*(3*(2*a^3 - 3*a*b^2)*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(2*a^3 - 3*a*b^2)*cos(d*x + c)^3*log(-sin(d
*x + c) + 1) + 18*a*b^2*cos(d*x + c)*sin(d*x + c) + 4*b^3 + 12*(3*a^2*b - b^3)*cos(d*x + c)^2)/(d*cos(d*x + c)
^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \tan {\left (c + d x \right )}\right )^{3} \sec {\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*tan(d*x+c))**3,x)

[Out]

Integral((a + b*tan(c + d*x))**3*sec(c + d*x), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 171 vs. \(2 (82) = 164\).
time = 0.90, size = 171, normalized size = 1.88 \begin {gather*} \frac {3 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (9 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 18 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 36 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 12 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 9 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 18 \, a^{2} b + 4 \, b^{3}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*tan(d*x+c))^3,x, algorithm="giac")

[Out]

1/6*(3*(2*a^3 - 3*a*b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(2*a^3 - 3*a*b^2)*log(abs(tan(1/2*d*x + 1/2*c)
 - 1)) + 2*(9*a*b^2*tan(1/2*d*x + 1/2*c)^5 - 18*a^2*b*tan(1/2*d*x + 1/2*c)^4 + 36*a^2*b*tan(1/2*d*x + 1/2*c)^2
 - 12*b^3*tan(1/2*d*x + 1/2*c)^2 - 9*a*b^2*tan(1/2*d*x + 1/2*c) - 18*a^2*b + 4*b^3)/(tan(1/2*d*x + 1/2*c)^2 -
1)^3)/d

________________________________________________________________________________________

Mupad [B]
time = 5.53, size = 160, normalized size = 1.76 \begin {gather*} -\frac {\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (3\,a\,b^2-2\,a^3\right )}{d}-\frac {6\,a^2\,b-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (12\,a^2\,b-4\,b^3\right )-\frac {4\,b^3}{3}+3\,a\,b^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+6\,a^2\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-3\,a\,b^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(c + d*x))^3/cos(c + d*x),x)

[Out]

- (atanh(tan(c/2 + (d*x)/2))*(3*a*b^2 - 2*a^3))/d - (6*a^2*b - tan(c/2 + (d*x)/2)^2*(12*a^2*b - 4*b^3) - (4*b^
3)/3 + 3*a*b^2*tan(c/2 + (d*x)/2) + 6*a^2*b*tan(c/2 + (d*x)/2)^4 - 3*a*b^2*tan(c/2 + (d*x)/2)^5)/(d*(3*tan(c/2
 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))

________________________________________________________________________________________